Bases: object
The structure that defines a Friction-Contact (3D or 2D ) problem.
Details in Global-Friction-contact problems (2D or 3D)
\(\mathrm{PFC}(M,H,q,b,\mu)\) such that
- ..math::
nowrap: |
- begin{cases}
M v = q + H r \
u = H^top v + b \
hat u = u +left[
left[begin{array}{c}
end{array}right]^T, alpha = 1 ldots n_c
- right]^T \ \
C^star_{mu} ni {hat u} perp r in C_{mu}
end{cases}
|
and the set \(C^{\alpha,\star}_{\mu^\alpha}\) is its dual.
Generated class (swig), based on C++ header Program listing for file numerics/src/FrictionContact/GlobalFrictionContactProblem.h.
Attributes: |
- b (array_like (np.float64, 1D)) – \({b} \in {{\mathrm{I\!R}}}^{m}\)
- dimension (int) – dimension \(d=2\) or \(d=3\) of the contact space (3D or 2D )
- env (None *) – opaque environment, solver specific
- H (NumericsMatrix *) – \({H} \in {{\mathrm{I\!R}}}^{n \times m}\), a matrix with \(m = d n_c\) stored in NumericsMatrix structure
- M (NumericsMatrix *) – \({M} \in {{\mathrm{I\!R}}}^{n \times n}\), a matrix with \(n\) stored in NumericsMatrix structure
- mu (array_like (np.float64, 1D)) – mu \({\mu} \in {{\mathrm{I\!R}}}^{n_c}\), vector of friction coefficients ( \(n_c =\)
numberOfContacts)
- numberOfContacts (int) – the number of contacts \(n_c\)
- q (array_like (np.float64, 1D)) – \({q} \in {{\mathrm{I\!R}}}^{n}\)
|