# siconos.numerics.GlobalFrictionContactProblem (Python class)¶

class siconos.numerics.GlobalFrictionContactProblem(*args)[source]

Bases: object

The structure that defines a Friction-Contact (3D or 2D ) problem.

$$\mathrm{PFC}(M,H,q,b,\mu)$$ such that

..math::
nowrap: begin{cases} M v = q + H r \ u = H^top v + b \ hat u = u +left[ left[begin{array}{c} mu^alpha |u^alpha_{T}|\ 0 \ 0 end{array}right]^T, alpha = 1 ldots n_c right]^T \ \ C^star_{mu} ni {hat u} perp r in C_{mu} end{cases}

and the set $$C^{\alpha,\star}_{\mu^\alpha}$$ is its dual.

Generated class (swig), based on C++ header Program listing for file numerics/src/FrictionContact/GlobalFrictionContactProblem.h.

Attributes: b (array_like (np.float64, 1D)) – $${b} \in {{\mathrm{I\!R}}}^{m}$$ dimension (int) – dimension $$d=2$$ or $$d=3$$ of the contact space (3D or 2D ) env (None *) – opaque environment, solver specific H (NumericsMatrix *) – $${H} \in {{\mathrm{I\!R}}}^{n \times m}$$, a matrix with $$m = d n_c$$ stored in NumericsMatrix structure M (NumericsMatrix *) – $${M} \in {{\mathrm{I\!R}}}^{n \times n}$$, a matrix with $$n$$ stored in NumericsMatrix structure mu (array_like (np.float64, 1D)) – mu $${\mu} \in {{\mathrm{I\!R}}}^{n_c}$$, vector of friction coefficients ( $$n_c =$$ numberOfContacts) numberOfContacts (int) – the number of contacts $$n_c$$ q (array_like (np.float64, 1D)) – $${q} \in {{\mathrm{I\!R}}}^{n}$$