siconos.numerics.GlobalFrictionContactProblem (Python class)

class siconos.numerics.GlobalFrictionContactProblem(*args)[source]

Bases: object

The structure that defines a Friction-Contact (3D or 2D ) problem.

Details in Global-Friction-contact problems (2D or 3D)

\(\mathrm{PFC}(M,H,q,b,\mu)\) such that


M v = q + H r \ u = H^top v + b \ hat u = u +left[ left[begin{array}{c}

mu^alpha |u^alpha_{T}|\

0 \ 0

end{array}right]^T, alpha = 1 ldots n_c

right]^T \ \

C^star_{mu} ni {hat u} perp r in C_{mu}


and the set \(C^{\alpha,\star}_{\mu^\alpha}\) is its dual.

Generated class (swig), based on C++ header Program listing for file numerics/src/FrictionContact/GlobalFrictionContactProblem.h.

  • b (array_like (np.float64, 1D)) – \({b} \in {{\mathrm{I\!R}}}^{m}\)
  • dimension (int) – dimension \(d=2\) or \(d=3\) of the contact space (3D or 2D )
  • env (None *) – opaque environment, solver specific
  • H (NumericsMatrix *) – \({H} \in {{\mathrm{I\!R}}}^{n \times m}\), a matrix with \(m = d n_c\) stored in NumericsMatrix structure
  • M (NumericsMatrix *) – \({M} \in {{\mathrm{I\!R}}}^{n \times n}\), a matrix with \(n\) stored in NumericsMatrix structure
  • mu (array_like (np.float64, 1D)) – mu \({\mu} \in {{\mathrm{I\!R}}}^{n_c}\), vector of friction coefficients ( \(n_c =\) numberOfContacts)
  • numberOfContacts (int) – the number of contacts \(n_c\)
  • q (array_like (np.float64, 1D)) – \({q} \in {{\mathrm{I\!R}}}^{n}\)