siconos.fclib¶
Module documentation
- class siconos.fclib.fclib_info[source]¶
Bases:
object
This structure allows the user to enter a problem information as a title, a short description and known mathematical properties of the problem
- property title¶
title of the problem
- property description¶
short decription of the problem
- property math_info¶
known properties of the problem (existence, uniqueness, …)
- class siconos.fclib.fclib_matrix_info[source]¶
Bases:
object
This structure allows the user to enter a description for a given matrix (comment, conditionning, determinant, rank.) if they are known.
- property comment¶
comment on the matrix properties
- property conditioning¶
- property determinant¶
- property rank¶
- class siconos.fclib.fclib_matrix[source]¶
Bases:
object
matrix in compressed row/column or triplet form
- property nzmax¶
maximum number of entries
- property m¶
number of rows
- property n¶
number of columns
- property p¶
row indices (size nz)
- Type
compressed
- Type
row (size m+1) or column (size n+1) pointers; triplet
- property i¶
column indices (size nz)
- Type
compressed
- Type
column or row indices, size nzmax; triplet
- property x¶
numerical values, size nzmax
- property nz¶
# of entries in triplet matrix, -1 for compressed columns, -2 for compressed rows
- property info¶
info for this matrix
- class siconos.fclib.fclib_global[source]¶
Bases:
object
The global frictional contact problem defined by
Given
a symmetric positive definite matrix \({M} \in {\mathrm{I\!R}}^{n \times n}\)
a vector \({f} \in {\mathrm{I\!R}}^n\),
a matrix \({H} \in {\mathrm{I\!R}}^{n \times m}\)
a matrix \({G} \in {\mathrm{I\!R}}^{n \times p}\)
a vector \(w \in {\mathrm{I\!R}}^{m}\),
a vector \(b \in {\mathrm{I\!R}}^{p}\),
a vector of coefficients of friction \(\mu \in {\mathrm{I\!R}}^{n_c}\)
the Global Mixed 3DFC problem is to find four vectors \({v} \in {\mathrm{I\!R}}^n\), \(u\in{\mathrm{I\!R}}^m\), \(r\in {\mathrm{I\!R}}^m\) and \(\lambda \in {\mathrm{I\!R}}^p\) denoted by \(\mathrm{GM3DFC}(M,H,G,w,b,\mu)\) such that
\[\begin{split}\begin{cases} M v = {H} {r} + G\lambda + {f} \\ \\ G^T v +b =0 \\ \ \hat u = H^T v + w +\left[ \left[\begin{array}{c} \mu \|u^\alpha_T\| \\ 0 \\ 0 \end{array}\right]^T, \alpha = 1 \ldots n_c \right]^T \\ \\ C^\star_{\mu} \ni {\hat u} \perp r \in C_{\mu} \end{cases}\end{split}\]where the Coulomb friction cone for a contact \(\alpha\) is defined by
\[C_{\mu^\alpha}^{\alpha} = \{r^\alpha, \|r^\alpha_T \| \leq \mu^\alpha |r^\alpha_N| \}\]and the set \(C^{\alpha,\star}_{\mu^\alpha}\) is its dual.
- property M¶
the matrix M (see mathematical description below)
- property H¶
the matrix M (see mathematical description below)
- property G¶
the matrix M (see mathematical description below)
- property mu¶
the vector \(\mu\) of coefficient of friction (see mathematical description below)
- property f¶
the vector f (see mathematical description below)
- property b¶
the vector b (see mathematical description below)
- property w¶
the vector w (see mathematical description below)
- property spacedim¶
the dimension , 2 or 3, of the local space at contact (2d or 3d friction contact laws)
- property info¶
info on the problem
- class siconos.fclib.fclib_global_rolling[source]¶
Bases:
object
The global rolling frictional contact problem defined by
Given
a symmetric positive definite matrix \({M} \in {\mathrm{I\!R}}^{n \times n}\)-
a vector \({f} \in {\mathrm{I\!R}}^n\) ,
a matrix \({H} \in {\mathrm{I\!R}}^{n \times m}\)
a matrix \({G} \in {\mathrm{I\!R}}^{n \times p}\)
a vector \(w \in {\mathrm{I\!R}}^{m}\) ,
a vector \(b \in {\mathrm{I\!R}}^{p}\) ,
a vector of coefficients of friction \(\mu \in {\mathrm{I\!R}}^{n_c}\)
a vector of coefficients of rolling friction \(\mu_r \in {\mathrm{I\!R}}^{n_c}\)
the Global Mixed 3DFC problem is to find four vectors \({v} \in {\mathrm{I\!R}}^n\), \(u\in{\mathrm{I\!R}}^m\) , \(r\in {\mathrm{I\!R}}^m\) and \(\lambda \in {\mathrm{I\!R}}^p\) denoted by \(\mathrm{GM3DFC}(M,H,G,w,b,\mu)\) such that
\[\begin{split}\begin{cases} M v = {H} {r} + G\lambda + {f} \\ \\ G^T v +b =0 \\ \\ \hat u = H^T v + w +\left[ \left[\begin{array}{c} \mu \|u^\alpha_T\|\\ 0 \\ 0 \end{array}\right]^T, \alpha = 1 \ldots n_c \right]^T \\ \\ C^\star_{\mu,\mu_r} \ni {\hat u} \perp r \in C_{\mu,\mu_r} \end{cases}\end{split}\]where the Coulomb friction cone for a contact \(\alpha\) is defined by
\[C_{\mu^\alpha}^{\alpha} = \{r^\alpha, \|r^\alpha_T \| \leq \mu^\alpha |r^\alpha_N| \}\]and the set \(C^{\alpha,\star}_{\mu^\alpha}\) is its dual.
- property M¶
the matrix M (see mathematical description below)
- property H¶
the matrix M (see mathematical description below)
- property G¶
the matrix M (see mathematical description below)
- property mu¶
the vector \(\mu\) of coefficient of friction (see mathematical description below)
- property mu_r¶
the vector \(\mu\) of rolling coefficient of friction (see mathematical description below)
- property f¶
the vector f (see mathematical description below)
- property b¶
the vector b (see mathematical description below)
- property w¶
the vector w (see mathematical description below)
- property spacedim¶
the dimension , 2 or 3, of the local space at contact (2d or 3d friction contact laws)
- property info¶
info on the problem
- class siconos.fclib.fclib_local[source]¶
Bases:
object
The local frictional contact problem defined by given
a positive semi–definite matrix \({W} \in {\mathrm{I\!R}}^{m \times m}\)
a matrix \({V} \in {\mathrm{I\!R}}^{m \times p}\)
a matrix \({R} \in {\mathrm{I\!R}}^{p \times p}\)
a vector \(q \in {\mathrm{I\!R}}^{m}\) ,
a vector \(s \in {\mathrm{I\!R}}^{p}\) ,
a vector of coefficients of friction \(\mu \in {\mathrm{I\!R}}^{n_c}\)
the Mixed 3DFC problem is to find three vectors \(u\in{\mathrm{I\!R}}^m\) , \(r\in {\mathrm{I\!R}}^m\) and \(\lambda \in {\mathrm{I\!R}}^p\) denoted by \(\mathrm{M3DFC}(R,V,W,q,s,\mu)\) such that
\[\begin{split}\begin{cases} V^T {r} + R \lambda + s = 0 \\ \\ \hat u = W {r} + V\lambda + q +\left[ \left[\begin{array}{c} \mu^\alpha \|u^\alpha_T\|\\ 0 \\ 0 \end{array}\right]^T, \alpha = 1 \ldots n_c \right]^T \\ \\ C^\star_{\mu} \ni {\hat u} \perp r \in C_{\mu} \end{cases}\end{split}\]where the Coulomb friction cone for a contact \(\alpha\) is defined by
\[C_{\mu^\alpha}^{\alpha} = \{r^\alpha, \|r^\alpha_T \| \leq \mu^\alpha |r^\alpha_N| \}\]and the set \(C^{\alpha,\star}_{\mu^\alpha}\) is its dual.
- property W¶
the matrix W (see mathematical description below)
- property V¶
the matrix V (see mathematical description below)
- property R¶
the matrix R (see mathematical description below)
- property mu¶
the vector \(\mu\) of coefficient of friction (see mathematical description below)
- property q¶
the vector q (see mathematical description below)
- property s¶
the vector s (see mathematical description below)
- property spacedim¶
the dimension , 2 or 3, of the local space at contact (2d or 3d friction contact laws)
- property info¶
info on the problem
- class siconos.fclib.fclib_solution[source]¶
Bases:
object
A solution or a guess for the frictional contact problem.
This structure allows to store a solution vector of a guess vector for the various frictional contact problems.
- property v¶
global velocity (or position/displacement for quasi-static problems) solution vector
- property u¶
local velocity (or position/displacement for quasi-static problems) solution vector
- property r¶
local contact forces (or impulses) solution vector
- property l¶
multiplier for equlity constraints ( \(\lambda\) ) solution vector
- siconos.fclib.fclib_write_global(problem, path)[source]¶
write global problem
- Return type
- Returns
1 on success, 0 on failure
- siconos.fclib.fclib_write_local(problem, path)[source]¶
write local problem
- Return type
- Returns
1 on success, 0 on failure
- siconos.fclib.fclib_write_global_rolling(problem, path)[source]¶
write global rolling problem
- Return type
- Returns
1 on success, 0 on failure
- siconos.fclib.fclib_write_solution(solution, path)[source]¶
write solution
- Return type
- Returns
1 on success, 0 on failure
- siconos.fclib.fclib_write_guesses(number_of_guesses, guesses, path)[source]¶
write initial guesses
- Return type
- Returns
1 on success, 0 on failure
- siconos.fclib.fclib_read_global(path)[source]¶
read global problem
- Return type
- Returns
problem on success; NULL on failure
- siconos.fclib.fclib_read_local(path)[source]¶
read local problem
- Return type
- Returns
problem on success; NULL on failure
- siconos.fclib.fclib_read_global_rolling(path)[source]¶
read global rolling problem
- Return type
- Returns
problem on success; NULL on failure
- siconos.fclib.fclib_read_solution(path)[source]¶
read solution
- Return type
- Returns
solution on success; NULL on failure