Class RollingFrictionContact#
Defined in Program listing for file kernel/src/simulationTools/RollingFrictionContact.hpp
-
class RollingFrictionContact : public LinearOSNS#
Formalization and Resolution of a Friction-Contact Problem.
This class is devoted to the formalization and the resolution of friction contact problems defined by :
\[\begin{split} velocity = q + M reaction \\ \\ velocity \geq 0, reaction \geq 0, reaction^{T} velocity =0 \end{split}\]and a Coulomb friction law.
With:
\( velocity \in R^{n} \) and \( reaction \in R^{n} \) the unknowns,
\( M \in R^{n \times n } \) and \( q \in R^{n} \)
The dimension of the problem (2D or 3D) is given by the variable contactProblemDim and the proper Numerics driver will be called according to this value.
Construction: just set Numerics Solver id
Main functions:
Usage:
compute(time) formalize, solve and post-process the problem.
pre- and post-pro are common to all LinearOSNS and defined in this class.
Public Functions
-
RollingFrictionContact(int dimPb = 5, int numericsSolverId = SICONOS_ROLLING_FRICTION_3D_NSGS)#
constructor (solver id and dimension)
- Parameters:
dimPb – dimension, default = 5
numericsSolverId – id of the solver to be used, optional, default : SICONOS_ROLLING_FRICTION_3D_NSGS
-
RollingFrictionContact(int dimPb, SP::SolverOptions options)#
constructor from a pre-defined solver options set.
- Parameters:
dim – pb dimension, 5 only
options – the options set
-
inline virtual ~RollingFrictionContact()#
destructor
-
inline int getRollingFrictionContactDim() const#
get the type of RollingFrictionContact problem (2D or 3D)
- Returns:
an int (2 or 3)
-
inline const MuStorage getMu() const#
get the vector mu, list of the friction coefficients
- Returns:
a vector of double
-
inline SP::MuStorage mu() const#
get a pointer to mu, the list of the friction coefficients
- Returns:
pointer on a std::vector<double>
-
inline double getMu(unsigned int i) const#
get the value of the component number i of mu, the vector of the friction coefficients
- Parameters:
i – the component number (starting from 0)
- Returns:
double value of mu
-
void updateMu()#
update mu vector
-
inline void setNumericsDriver(RollingDriver newFunction)#
set the driver-function used to solve the problem
- Parameters:
newFunction – function of prototype Driver
-
virtual void initialize(SP::Simulation simulation) override#
initialize the RollingFrictionContact problem(compute topology …)
- Parameters:
simulation – the simulation, owner of this OSNSPB
-
SP::RollingFrictionContactProblem frictionContactProblem()#
- Returns:
the friction contact problem from Numerics
-
RollingFrictionContactProblem *frictionContactProblemPtr()#
- Returns:
the friction contact problem from Numerics (raw ptr, do not free)
-
int solve(SP::RollingFrictionContactProblem problem = SP::RollingFrictionContactProblem())#
solve a friction contact problem
- Parameters:
problem – the friction contact problem
- Returns:
info solver information result
-
virtual int compute(double time) override#
Compute the unknown reaction and velocity and update the Interaction (y and lambda )
- Parameters:
time – the current time
- Returns:
int information about the solver convergence (0: ok, >0 problem, see Numerics documentation)
-
virtual void display() const override#
print the data to the screen
-
virtual bool checkCompatibleNSLaw(NonSmoothLaw &nslaw) override#
Check the compatibility fol the nslaw with the targeted OSNSP.