Class GlobalFrictionContact#
Defined in Program listing for file kernel/src/simulationTools/GlobalFrictionContact.hpp
-
class GlobalFrictionContact : public LinearOSNS#
Formalization and Resolution of a Friction-Contact Problem.
This class is devoted to the formalization and the resolution of primal friction contact problems defined by :
\[\begin{split} M velocity = q + H reaction \\ globalVelocities = H^T velocity + tildeGlobalVelocities \end{split}\]and \( globalVelocities, reaction \) belongs to the Coulomb friction law with unilateral contact.
With:
\( velocity \in R^{n} \) and \( reaction \in R^{n} \) the unknowns,
\( M \in R^{n \times n } \) and \( q \in R^{n} \)
\( globalVelocities \in R^{m} \) and \( reaction \in R^{m} \) the unknowns,
\( tildeGlobalVelocities \in R^{m} \) is the modified local velocity ( \( e U_{N,k} \))
\( M \in R^{n \times n } \) and \( q \in R^{n} \)
\( H \in R^{n \times m } \)
The dimension of the problem (2D or 3D) is given by the variable contactProblemDim and the right Numerics driver will be called according to this value.
Construction:
Constructor from data (inputs = Simulations*, id, SP::NonSmoothSolver) - The solver is optional. Main functions:
Main functions:
formalization of the problem: computes M,q using the set of “active” Interactions from the simulation and the interactionBlock-matrices saved in the field interactionBlocks. Functions: initialize(), computeInteractionBlock(), preCompute()
solving of the GlobalFrictionContact problem: function compute(), used to call solvers from Numerics through the frictionContact2D_driver() or frictionContact3D_driver() interface of Numerics.
post-treatment of data: set values of y/lambda variables of the active Interaction (ie Interactions) using ouput results from the solver (velocity,reaction); function postCompute().
For details regarding the available options, see Nonsmooth problems formulations and available solvers in users’ guide.
Subclassed by GlobalRollingFrictionContact
Public Functions
-
GlobalFrictionContact(int dimPb, int numericsSolverId = SICONOS_GLOBAL_FRICTION_3D_NSGS)#
constructor (solver id and dimension)
- Parameters:
dimPb – dimension (2D or 3D) of the friction-contact problem
numericsSolverId – id of the solver to be used, optional, default : SICONOS_GLOBAL_FRICTION_3D_NSGS
-
GlobalFrictionContact(int dimPb, SP::SolverOptions options)#
constructor from a pre-defined solver options set
- Parameters:
options – the options set
-
inline virtual ~GlobalFrictionContact()#
destructor
-
inline int getGlobalFrictionContactDim() const#
get the type of GlobalFrictionContact problem (2D or 3D)
- Returns:
an int (2 or 3)
-
inline size_t getGlobalSizeOutput() const#
get dimension of the problem
- Returns:
an unsigned ing
-
inline SP::SiconosVector globalVelocities() const#
get globalVelocities
- Returns:
pointer on a SiconosVector
-
inline void setGlobalVelocities(SP::SiconosVector newPtr)#
set globalVelocities to pointer newPtr
- Parameters:
newPtr – the new vector
-
inline SP::MuStorage mu() const#
get a pointer to mu, the list of the friction coefficients
- Returns:
pointer on a std::vector<double>
-
inline double getMu(unsigned int i) const#
get the value of the component number i of mu, the vector of the friction coefficients
- Returns:
the friction coefficient for the ith contact
-
void initVectorsMemory()#
Memory allocation or resizing for z,w,q,b, globalVelocities.
-
virtual void initialize(SP::Simulation sim)#
initialize the GlobalFrictionContact problem(compute topology …)
- Parameters:
sim – the simulation, owner of this OSNSPB
-
SP::GlobalFrictionContactProblem globalFrictionContactProblem()#
- Returns:
the friction contact problem from Numerics
-
GlobalFrictionContactProblem *globalFrictionContactProblemPtr()#
- Returns:
the friction contact problem from Numerics (raw ptr, do not free)
-
int solve(SP::GlobalFrictionContactProblem problem = SP::GlobalFrictionContactProblem())#
solve a friction contact problem
- Parameters:
problem – the friction contact problem
- Returns:
info solver information result
-
virtual bool preCompute(double time)#
Construction of the problem.
- Parameters:
time – current time
-
virtual int compute(double time)#
Compute the unknown reaction and velocity and update the Interaction (y and lambda )
- Parameters:
time – current time
-
virtual void postCompute()#
post-treatment of output from Numerics solver: set values of the unknowns of Interactions using (velocity,reaction)
-
virtual void display() const#
print the data to the screen